Abstract: The genus *Inocybe* (including subgenus *Mallocybe*) is a significant component of the ectomycorrhizal community in arctic and alpine habitats in terms of both diversity and distribution. Species are associated primarily with low woody shrubs of *Salix*, *Betula* and *Dryas*. There is evidence that shrubs are expanding in arctic-alpine habitats making the ectomycorrhizal fungi that support them of high interest. Here we provide the first detailed report for six *Mallocybe* taxa with willows from the Rocky Mountain alpine zone (WY, MT, CO) including: *Inocybe arthrocystis*, *I. dulcamara*, *I. leucoloma*, *I. leucoblema* and in the *I. fulvipes* group, *I. substraminipes* and other taxa. Phylogenetic analysis matched Rocky Mountain specimens to arctic-alpine specimens from Scandinavia. ITS sequences of Kühner and Favre type specimens were used as references for several clades. Data suggest that these species have a broad intercontinental range in arctic-alpine habitats and a few are known from the subalpine. A key to *Mallocybe* species in the Rocky Mountains is provided along with type information.

Key words: Key Words: Arctic-alpine, fungi, *Inocybaceae*, Kühner types, Rocky Mountains, Sweden
Introduction: The genus *Inocybe* is a significant component of the ectomycorrhizal community in arctic and alpine habitats in terms of both diversity and distribution (Cripps & Horak 2009). Of the approximately 200+ ectomycorrhizal fungi reported in northern cold-dominated regions, over half are concentrated in just two genera, *Cortinarius* and *Inocybe* (Cripps & Horak 2009). In arctic-alpine habitats, they are primarily associated with the low woody shrubs *Salix, Betula, Dryas* and the herbal plant *Bistorta* (Polygonaceae), although there are scattered reports with other hosts. Recent studies suggest that there is evidence that woody shrubs are expanding in both arctic and alpine areas due to changes in climate (Sturrn et al. 2001, Walker et al. 2006, Ryberg et al. 2009). Chapin and Korner (1995) suggest that as few as 20 genera of vascular plants account for most of the biomass in the circumpolar arctic, and that in most alpine areas less than ten species make up 90% of the biomass; in both cases a significant portion are woody shrubs. Therefore, the ectomycorrhizal fungi that support the physiological processes and survival of arctic and alpine shrubs should be of high interest.

Over 60 species of *Inocybe* (including subgenus *Malloocybe* Kuyper) have been reported in Arctic and alpine habitats (reviewed in Graff 1994 and Cripps & Horak 2009). Of these, approximately 20 taxa in subgenus *Malloocybe* have been reported in arctic and alpine habitats worldwide, with around 13 reported consistently and from more than one area (Table 1).

The genus *Inocybe* was previously considered part of the Cortinariaceae, but is now regarded as an independent family *Inocybaceae* as interpreted from molecular phylogenetic analysis (Matheny 2005, Matheny et al. 2006, Ryberg et al. 2010). *Malloocybe* is traditionally considered a subgenus of *Inocybe* (Kuyper 1986, Stangl 1989, Jacobsson 2008), although recent work suggests raising it to genus rank (Matheny 2009, Matheny et al. 2009). Here we maintain it as a subgenus within *Inocybe* for practical reasons and reserve taxonomic changes for a subsequent paper.

Table 1. Species in subgenus *Malloocybe* (*Inocybe*) reported from arctic and alpine habitats with decreasing latitude from North (Svalbard) to South (Rocky Mountains).

<table>
<thead>
<tr>
<th>Species</th>
<th>Svalbard</th>
<th>Greenland</th>
<th>Scandinavia</th>
<th>Pyrenees</th>
<th>Alps</th>
<th>Rocky Mts</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. arthrocytis Kühner</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. dulcamara (Alb & Schw) Kumm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>v. parcelosquamosa J. Favre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v. peronata J. Favre</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>v. pygmaea J. Favre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. fulvipes group* Kühner</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>I. fuscomarginata Kühner</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. leucoblema Kühner</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>I. leucoloma Kühner</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>I. solidipes Kühner</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. squarrosoannulata Kühner</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>I. umbrinofusca Kühner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

* *I. fulvipes* group includes: *I. fulvipes, I. substraminipes* and *I. paludosa.*
Not included are Kühner species: *I. hebelomoides, I. leucopleis, I. pelargoniodora, I. sericiepes, I. subannulata.*
Most species of *Inocybe* are characterized by smooth or nodulose brown spores that lack a germ pore; most have distinctive thick-walled pleurocystidia (metuloids) often with crystals at the apex. Subgenus *Mallocybe* is differentiated by a lack of metuloids (along with subgenus *Inosperma sensu* Stangl 1989). *Mallocybe* species in general are recognized macroscopically by a fibrous or scaly often flattened pileus, a short stipe (for many), ocher, brown, or red brown coloration, a cortina (with a few exceptions), adnate lamellae (most) and the absence of a spermatic odor (odor typically of burnt sugar, honey or absent). Microscopically spores are smooth, pleurocystidia absent, cheilocystidia thin-walled without crystals, and necropigment can be observed in basidia of fresh and dried specimens (Kuyper 1986, Stangl 1989, Jacobsson 2008).

Historically, Favre (1955) in his excellent work on alpine fungi reported eight taxa of *Mallocybe* from the Swiss National Park, five as forms of *I. dulcamara*. Several of his forms have since been raised to the rank of species. Over thirty years later, Kühner reported 15 taxa of *Mallocybe* from the French Alps, 11 of which were new (Kühner 1988). Some of his new species are poorly understood. Since this time, arctic and alpine Mallocybes have been reported at least from: Svalbard (Huhtinen 1987, Gulden & Torkelsen 1996, E. Larsson, pers. observation), Greenland (Borgen et al. 2006), Scotland (Watling 1987), Pyrenees and Spain (Corriel 2008), Scandinavia (Vauras and Huhtinen 1986, Gulden 2005), Alps (Kühner 1988, Kühner and Lamoure 1986, Bon 1989, 1990, 1991, 1992, 1997, Graf 1994, Jamoni & Bon 1995, Bizio 1995, 1997, Moreau 2002, Jamoni 2008), Canada (Ohenjoa et al. 1998), Alaska (Miller 1987) and the Rocky Mountains, USA (Cripps & Horak 2008). These references were used to develop Table 1; not included are reports from Iceland, Scotland and Russia.

Here we report at least six taxa of *Mallocybe* from the Rocky Mountain alpine region in the lower USA in association with *Salix* and *Dryas* species. This includes: *Inocybe arthrocytis* Kühner, *I. dulcamara v. typique* (Alb. & Schwein.) P. Kumm., *I. leucoblema* Kühner, and in the *I. fulvipes* Kühner group, *I. aff. substraminipes* Kühner and other taxa. These are compared molecularly to taxa from arctic and alpine habitats in Europe. Type material was included when possible for molecular analysis and a key to North American alpine taxa is provided (Addendum 1).

Materials and Methods

NORTH AMERICAN COLLECTIONS: North American specimens were collected between 1999 and 2008 in alpine areas above treeline on the Beartooth Plateau (Wyoming/Colorado border) and at various locations in Colorado (Cottonwood Pass, Cumberland Pass, Independence Pass, Loveland Pass and the San Juan Mountains). All were collected within the alpine vegetation zone in association with shrub willows *Salix glauca* L. and *S. planifolia* Pursh., dwarf willows *S. reticulata* L. and *S. arctica* Pall., and/or species of *Dryas*. The Beartooth Plateau is in the middle Rocky Mountain floristic zone at lat. 45°N and long. 109°W with minimum alpine zone elevations of 3,000 m a.s.l. For Colorado at latitudes of 37°-39°N, collections were made above treeline at 3,700 m a.s.l. or higher in the southern Rocky Mountains.

Each collection was photographed, described, drawn, and identified on subsequent completion of microscopic examination. Spores and other microscopic features were examined in 3% KOH after rehydration. Colors are from Kornerup and Wanscher (1967). Voucher specimens are in herbaria at Montana State University, Bozeman, MT (MONT) and the Institute of Integrative Biology, ETH, Zurich, Switzerland (ZT). Dried tissue samples in small vials were subjected to
molecular analysis. North American collections are described in detail and compared molecularly to European material.

Kühner’s type collections from G (Geneva) were the basis for the microscopic details drawn by Egon Horak (E.H.) and translations of Kühner’s protologues were also done by E.H. This author comments that the large range of Kühner’s spore measurements were derived from both 1-, 2-, and/or 4-spored basidia; E.H. measurements of Kühner’s types are derived from 4-spored basidia. Kühner’s Latin protologues were composed several years after his death by other authors and E.H. took the liberty in translations to delete repetitions, meaningless references, and to take into account missing data. Apparently gaps exist in macrodescriptions that may have been present in Kühner’s original notes. Also, all measurements were converted from cm to mm in the text.

TAXON SAMPLING: Sixty-nine specimens of Inocybe subgenus Malloxybe from arctic/alpine and sub-alpine environments originating from USA and Europe were sequenced (Tab. 2). Seven type specimens of arctic/alpine species (I. leucoloma Kühner, I. substraminipes Kühner, I. fuscocomarginata Kühner, I. solidipes Kühner, I. umbrinofusca Kühner, I. squarrosoannulata Kühner and I. dulcamara f. pygmaea J. Favre) were available at Herbarium G and permission for sequencing granted. Based on results from earlier molecular phylogenetic studies of Agaricales (Matheny et al 2006) Crepidotus (AM882996, FJ904178) was selected as the out-group. In addition LSU sequences from the Malloxybe, Malloxybella and Auritella clades (Matheny et al 2009) were downloaded from GenBank and include AY380403, EU568855, EU600887, AY380371 and AY380403.

DNA EXTRACTION, PCR AND SEQUENCING: Sequences of the complete ITS region, 1200 base pairs of the 5´ end of the nuclear LSU ribosomal DNA were generated. DNA extractions, PCR reactions and sequencing for recently collected specimens were performed as described in Larsson and Örstadus (2008). Type specimens were extracted using a modified CTAB method and PCR and sequencing follow protocols described in Larsson and Jacobsson (2004).

PHYLOGENETIC ANALYSES: Sequences were edited and assembled using Sequencher 3.1 (Gene Codes, Ann Arbor). Sequences were aligned automatically using the software MAFFT (Katoh et al. 2005) and adjusted manually using the data editor in PAUP* (Swofford 2003). Sequences have been deposited in GenBank and accession numbers are listed in Table 2.

Heuristic searches for most parsimonious trees were performed using PAUP*. All transformations were considered unordered and equally weighted. Variable regions with ambiguous alignment were excluded and gaps were treated as missing data. Heuristic searches with 1000 random-addition sequence replicates and TBR branch swapping were performed, saving 100 trees in each replicate. Relative robustness of clades was assessed by the bootstrap method using 1000 heuristic search replicates with 100 random taxon addition sequence replicate, TBR swapping, saving 100 trees in each replicate.

Results: For five of the seven type specimens, we succeeded in generating useful sequences. The complete ITS region was recovered for I. leucoloma, I. squarrosoanualata and I. dulcamara f. pygmaea. For I. substraminipes, the ITS2 region was recovered and for I. umbrinofusca the ITS1 region. The aligned dataset comprised 78 taxa and had 2294 characters. After exclusion of ambiguous regions 1950 characters remained for the analysis. Of these 1384 were constant, 142 were variable and parsimony uninformative, and 424 were
Table 2. Data of specimens sequenced in this study. Specimens with CLC numbers are deposited in Herbarium MONT. EL, SM, SJ and BJ numbers in Herbarium GB (Sweden). Type specimens are from Herbarium G (Geneva).

<table>
<thead>
<tr>
<th>Species</th>
<th>Coll No.</th>
<th>Original location</th>
<th>Putative host</th>
<th>Genbank</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. arthrocytis</td>
<td>CLC 1141</td>
<td>Independence Pass CO, USA</td>
<td>Shrub Salix</td>
<td>GU980653</td>
</tr>
<tr>
<td></td>
<td>CLC 1356</td>
<td>Independence Pass CO, USA</td>
<td>Dwarf Salix</td>
<td>GU980649</td>
</tr>
<tr>
<td></td>
<td>CLC 1357</td>
<td>Independence Pass CO, USA</td>
<td>Dwarf & shrub Salix</td>
<td>GU980652</td>
</tr>
<tr>
<td></td>
<td>CLC 1688</td>
<td>San Juans, Stony Pass CO, USA</td>
<td>S. glauca & S. arctica</td>
<td>GU980651</td>
</tr>
<tr>
<td></td>
<td>CLC 1752</td>
<td>Independence Pass CO, USA</td>
<td>S. planifolia</td>
<td>GU980650</td>
</tr>
<tr>
<td></td>
<td>EL62-07</td>
<td>Sweden</td>
<td>S. herbaecia</td>
<td>FN550941</td>
</tr>
<tr>
<td></td>
<td>SJ06-011</td>
<td>Sweden</td>
<td>Salix sp.</td>
<td>GU980654</td>
</tr>
<tr>
<td></td>
<td>BJ900815</td>
<td>Sweden</td>
<td>Salix sp.</td>
<td>GU980655</td>
</tr>
<tr>
<td>I. dulcamara</td>
<td>CLC 1131</td>
<td>Beartooth Pass, MT, USA</td>
<td>Dwarf & shrub Salix</td>
<td>GU980639</td>
</tr>
<tr>
<td></td>
<td>CLC 1160</td>
<td>Beartooth Pass, MT, USA</td>
<td>Dwarf & shrub Salix</td>
<td>GU980642</td>
</tr>
<tr>
<td></td>
<td>CLC 1241</td>
<td>Independence Pass CO, USA</td>
<td>S. glauca</td>
<td>GU980637</td>
</tr>
<tr>
<td></td>
<td>CLC 1295</td>
<td>Loveland Pass CO, USA</td>
<td>S. glauca</td>
<td>GU980636</td>
</tr>
<tr>
<td></td>
<td>CLC 1333</td>
<td>Independence Pass CO, USA</td>
<td>Dwarf Salix</td>
<td>GU980635</td>
</tr>
<tr>
<td></td>
<td>CLC 1364</td>
<td>Independence Pass CO, USA</td>
<td>S. glauca, S. reticulata</td>
<td>GU980641</td>
</tr>
<tr>
<td></td>
<td>CLC 1408</td>
<td>San Juans, Cinnamon Pass CO, USA</td>
<td>Dwarf Salix</td>
<td>GU980647</td>
</tr>
<tr>
<td></td>
<td>CLC 1421</td>
<td>San Juans, Engineer Pass CO, USA</td>
<td>S. planifolia</td>
<td>GU980646</td>
</tr>
<tr>
<td></td>
<td>CLC 1458</td>
<td>Independence Pass CO, USA</td>
<td>Shrub</td>
<td>GU980638</td>
</tr>
<tr>
<td></td>
<td>CLC 1581</td>
<td>Beartooth Pass, WY, USA</td>
<td>Salix near</td>
<td>GU980634</td>
</tr>
<tr>
<td></td>
<td>CLC 1664</td>
<td>San Juans, Horseshoe Pass, USA</td>
<td>Dryas? S.</td>
<td>GU980640</td>
</tr>
<tr>
<td></td>
<td>CLC 1841</td>
<td>San Juans, Imogene Pass, USA</td>
<td>S. arctica S. planifolia</td>
<td>GU980644</td>
</tr>
<tr>
<td></td>
<td>EL99-05</td>
<td>Norway</td>
<td>Betula sp.</td>
<td>GU980643</td>
</tr>
<tr>
<td></td>
<td>EL33-05</td>
<td>Norway</td>
<td>S. glauca</td>
<td>GU980645</td>
</tr>
<tr>
<td></td>
<td>EL89-06</td>
<td>Sweden</td>
<td>S. glauca, Betula</td>
<td>FJ904122</td>
</tr>
<tr>
<td>I. dulc. v pygmaea</td>
<td>EL48-05</td>
<td>Norway</td>
<td>Dryas, S. reticulata</td>
<td>GU980628</td>
</tr>
<tr>
<td></td>
<td>GK13103</td>
<td>Type Favre</td>
<td>Dwarf Salix</td>
<td>GU980629</td>
</tr>
<tr>
<td>I. fulvipes group A</td>
<td>CLC 1375</td>
<td>Independence Pass CO, USA</td>
<td>Shrub Salix</td>
<td>GU980605</td>
</tr>
<tr>
<td></td>
<td>CLC 2292</td>
<td>Loveland Pass CO, USA</td>
<td>Salix spp.</td>
<td>GU980604</td>
</tr>
<tr>
<td></td>
<td>EL30-07</td>
<td>Sweden</td>
<td>Dryas, S. reticulata</td>
<td>GU850599</td>
</tr>
<tr>
<td></td>
<td>EL37-05</td>
<td>Norway</td>
<td>Dryas, Salix p.</td>
<td>AM882858</td>
</tr>
<tr>
<td></td>
<td>EL83-07</td>
<td>Sweden</td>
<td>S. herbaecia, S. polaris</td>
<td>FN550935</td>
</tr>
<tr>
<td></td>
<td>EL99-07</td>
<td>Sweden</td>
<td>S. polaris</td>
<td>GU980600</td>
</tr>
<tr>
<td></td>
<td>CLC 1649</td>
<td>Cumberland Pass CO, USA</td>
<td>Dryas sp.</td>
<td>GU980602</td>
</tr>
<tr>
<td></td>
<td>CLC 1731</td>
<td>Independence Pass CO, USA</td>
<td>Dryas & Salix</td>
<td>GU980603</td>
</tr>
<tr>
<td>I. substraminipes</td>
<td>K 70-148</td>
<td>Type Kühner (group A)</td>
<td>Dryas</td>
<td>GU980601</td>
</tr>
<tr>
<td>I. fulvipes group B</td>
<td>CLC 1490</td>
<td>Independence Pass CO, USA</td>
<td>Shrub Salix</td>
<td>GU980612</td>
</tr>
<tr>
<td></td>
<td>CLC 1566</td>
<td>Loveland Pass CO, USA</td>
<td>Salix spp.</td>
<td>GU980612</td>
</tr>
<tr>
<td></td>
<td>CLC 1580</td>
<td>Beartooth Pass, WY, USA</td>
<td>S. reticulata</td>
<td>GU980606</td>
</tr>
<tr>
<td></td>
<td>CLC 1844</td>
<td>Mineral Basin CO, USA</td>
<td>S. reticulata</td>
<td>GU980608</td>
</tr>
<tr>
<td></td>
<td>EL12-08</td>
<td>Beartooth Pass, WY USA</td>
<td>S. arctica S. planifolia</td>
<td>GU980611</td>
</tr>
<tr>
<td></td>
<td>SJ84030</td>
<td>Sweden</td>
<td>Salix sp.</td>
<td>GU980609</td>
</tr>
<tr>
<td>I. fuscomarginata</td>
<td>BJ890718</td>
<td>Sweden</td>
<td>Salix sp.</td>
<td>GU980656</td>
</tr>
<tr>
<td></td>
<td>EL109-06</td>
<td>Sweden</td>
<td>S. herbaecia</td>
<td>FN550940</td>
</tr>
<tr>
<td></td>
<td>EL77-07</td>
<td>Sweden</td>
<td>Dryas sp.</td>
<td>GU980657</td>
</tr>
<tr>
<td>I. leucoblema</td>
<td>CLC 1721</td>
<td>Cottonwood Pass CO, USA</td>
<td>Dryas sp.</td>
<td>GU80632</td>
</tr>
<tr>
<td></td>
<td>EL66-07</td>
<td>Sweden</td>
<td>Dryas, S. reticulata</td>
<td>FN550936</td>
</tr>
<tr>
<td></td>
<td>SEB97-09</td>
<td>Sweden</td>
<td>Pinus sp.</td>
<td>GU80631</td>
</tr>
<tr>
<td></td>
<td>SM2324</td>
<td>Sweden</td>
<td>Picea sp.</td>
<td>GU80630</td>
</tr>
<tr>
<td></td>
<td>TAA 128324</td>
<td>Estonia</td>
<td>Salix sp.</td>
<td>GU80633</td>
</tr>
<tr>
<td>I. leucomela</td>
<td>CLC 1223</td>
<td>Loveland Pass CO, USA</td>
<td>Dwarf & shrub Salix</td>
<td>GU980624</td>
</tr>
<tr>
<td></td>
<td>CLC 1355</td>
<td>Independence Pass CO, USA</td>
<td>Shrub Salix</td>
<td>GU980623</td>
</tr>
<tr>
<td></td>
<td>CLC 1431</td>
<td>San Juans, Emma Lake CO, USA</td>
<td>S. planifolia</td>
<td>GU980619</td>
</tr>
<tr>
<td></td>
<td>CLC 1442</td>
<td>San Juans, Black Bear CO, USA</td>
<td>S. planifolia</td>
<td>GU980620</td>
</tr>
<tr>
<td></td>
<td>CLC 1703</td>
<td>San Juans, Cinnamon Pass CO, USA</td>
<td>S. reticulata</td>
<td>GU980617</td>
</tr>
<tr>
<td></td>
<td>CLC 1869</td>
<td>San Juans, Emma Lake CO, USA</td>
<td>S. planifolia</td>
<td>GU980618</td>
</tr>
<tr>
<td></td>
<td>CLC 1877</td>
<td>San Juans, Mineral Basin CO, USA</td>
<td>S. arctica?</td>
<td>GU980621</td>
</tr>
</tbody>
</table>

GU980601
parsimony informative. The maximum parsimony analysis yielded 95300 equally most parsimonious trees (length=983, CI= 0.7447, RI= 0.9031) one of which is presented in Fig 1. Bootstrap values above 50% are indicated above branches.

Bootstrap analysis recovered eight clades with support corresponding to species or species groups: *I. arthrocystis* (97%), *I. fuscomarginata* (100%), *I. terrigena-group* (100%), *I. dulcamara-group* (99%), *I. dulcamara f. pygmaea* (99%), *I. leucoloma* (97%), *I. leucoblema* (99%) and *I. fulvipes/substraminipes-group* (85%). *Inocybe umbrinafusca* and *I. squarrosoannulata* occur on single branches and represent unique sequence types (Fig 1). Six of the clades include North American as well as European specimens.

Taxonomy

Taxa with smooth to rough stipes, no yellow in stipe base

Inocybe arthrocystis Kühner (Figs. 2, 3)

Pileus 10-25(30) mm in diameter (small), mostly conic-convex, almost bell-shaped, a few convex, with or without boss, not flat in center, ocher, dark ocher, uniformly minutely pubescent over whole cap, appearing velvety; margin turned under a bit when young, entire, not splitting, usually clean of remnants. *Lamellae* narrow adnate or emarginate, strikingly white or cream at first, milk coffee, then yellow brown, can be lighter at edges. *Cortina* not noted for most specimens, or possibly as a few fibrils. *Stipe* 10-25(-40) mm long, 2-4(-6) mm wide, slim, equal, straight or bit curved, dingy white at first, then pale ocher, whiter at base, surface roughened with a few longitudinal fibrils, hollow or stuffed, rubbery. *Context* dingy white to pale watery brown. *Odor* absent.

Spores brown, (8)9.5-12(-14) x 4.5-5.5(-6.5) μm, on average 11 x 5 μm, long and narrow, quotient of length to width around 2, regular, tending towards narrowly cylindrical, subphaesoliform, some with broad conic apex, length variable. *Basidia* 35-40(-50) x 8-11(-13) μm, clavate, 4-sterigmate, a few 2-sterigmate. *Pleurocystidia* absent. *Cheilocystidia* articulated, in chains, mostly clavate, a few broader, 10-30 x 8-18 μm, abundant, with pale or brown contents; walls thin, some slightly encrusted. *Clamp connections* present and obvious on articulated cystidia.
Fig. 1A. Upper part. One of the equally most parsimonious trees obtained from the maximum parsimony analysis, presented as a phylogram. Bootstrap values are indicated on branches. The nine recovered clades have been marked and named.
Fig. 1B. Lower part. One of the equally most parsimonious trees obtained from the maximum parsimony analysis, presented as a phylogram. Bootstrap values are indicated on branches. The nine recovered clades have been marked and named.
Fig. 2. Alpine Inocybe (Mallocybe) species. Row 1: *I. arthrocytis* CLC 1293 (USA), EL 62-07 (Sweden). Row 2: *I. dulcamara* CLC 1752 (USA), CLC 1241 (USA). Row 3: *I. leucoblema* CLC 1721 (USA), EL 66-07 (Sweden). Row 4: *I. leucoloma*, CLC 1431 (USA), EL 41-07c (Sweden). CLC specimens are from the Rocky Mts and EL specimens from Northern Europe. Bar = 1 cm (rows 1, 4, 6); bar = 2 cm (rows 2, 3, 5).
Fig. 2. Alpine *Inocybe* species (continued). Taxa with scaly stipes and/or or yellow in stipe base. Row 5: *Inocybe fulvipes* clade A: CLC 2292 (USA), EL 30-07c (Sweden). Row 6: *I. fulvipes* clade B: CLC 1844 (USA), CLC 1441 (USA). *Inocybe terrigena* EL 195-09 (USA). Bar = 1 cm (rows 1, 4, 6); bar = 2 cm (rows 2, 3, 5).

Ecology: alpine zone, associated with dwarf and shrub willows, including mixes of *Salix reticulata*, *S. planifolia*, *S. glauca*, and *S. arctica*. All collections are from Colorado.

Remarks: This *Mallocybe* possesses a bell-shaped, uniformly pubescent ocher pileus and white to pale ocher stipe; the lamellae are often strikingly white but can be more yellow brown. For all specimens, the cortina was not apparent (clean margin) and an odor was lacking. This taxon is microscopically similar to *I. malenconii* which has a flatter cap with more brown coloration and wider cystidia. Our specimens fit Kühner’s Type description and micro-features (Fig. 3). This is the first report of *I. arthrocystis* from the Rocky Mountain alpine, although it is known from arctic-alpine areas of Europe and Greenland.
Fig. 3. Micro-features of Alpine Inocybe (Malloocybe) species from the Rocky Mountain alpine zone and holotypes. Top: I. arthrocytis CLC 1357, 1-spores, 2-basidia, 3-cheilocystidia. Bottom: I. arthrocytis G-C (R. Kühner nr. 73-310, holotype), 1= spores, 2= basidia, 3= cheilocystidia. Bar = 10 um. Spores 2000x, basidia & cystidia 1000x.
Inocybe dulcamara (Alb. & Schwein) P. Kumm. Fuhr. Pilzk (Swickau): 79 (1871) (Figs. 2, 4)

Agaricus dulcamara Alb. & Schwein. Sacc. Syll. Fung. 763, 1887

Pileus 15-45 mm in diameter, at first hemispheric or with low umbo, becoming broadly convex, umbo remaining or not, to applanate with low boss, or flat or sunken in center, uniformly pale ocher (dull yellow brown) but not dark colors, often with olive tint, rather smooth to indistinctly radially fibrous; margin incurved when young, later turned down or in, and entire. **Lamellae** broadly adnate or subdecurrent when young, often narrow, pale yellow brown at first, then yellow brown (ocher) with olive tint, edges can be paler. **Cortina** cobwebby, pale whitish buff, pale yellowish, fugacious or leaving a few fibrils that can adhere to margin of young specimens. **Stipe** 15-40(60) mm long x 3-6(8) mm wide, equal, can be rather long, undulating slightly or not, dull yellow brown, whiter at base, surface rough-fibrous, somewhat floccose at apex, in some collections with persistent white peronate sheath that flares upward, white at base in most cases, stuffed or hollow, tough. **Context** white in cap, watery yellow brown in stipe; **odor** of burnt sugar, honey-like. **Basidiomes** dry pale yellow brown with olive tint (no yellow at base).

Spores brown, 8.5-11.5 x 5-6 μm, on average 10.7 x 5.4 μm, larger for 2-spored basidia up to 17 x 7.5 μm, smooth, subphaesoliform to sub-amygdaliform, with conic or obtuse apex. **Basidia** long, clavate, 30-60(85) x 8-12(19) μm, mostly 4-sterigmate, in some collections mixed with 2-sterigmate basidia. **Pleurocystidia** absent. **Cheilocystidia** clavate, cylindrical, 15-35(-50) x 6-15(-28) μm, pale, thin-walled. **Clamp connections** present.

Ecology: alpine zone with mixed dwarf (*S. reticulata*) and shrubby willow (*S. glauca*, possibly *S. planifolia*), CLC 1581 was possibly with *Dryas*.

Remarks: Our specimens fit nicely into the *I. dulcamara* clade described in the broad sense (Favre’s *forme Typique*). Specimens are typically pale ocher with rather smooth cap, olive yellowish gills, fibrous ocher stipe, white stipe base, with an odor of burnt sugar. The Beartooth specimens with a white peronate sheath and 2-spored basidia group molecularly with 4-spored specimens. This taxon is apparently widespread in the Rocky Mountains alpine zone and is known from other arctic-alpine areas with willows. It is also reported from subalpine areas and with aspen in the Rockies (Cripps 1997). There is sequence variation within the *I. dulcamara* group clade indicating that there are possibly two or more taxa hidden in this morphotype. The different sequence types occur in both Europe and North America.

One specimen from Norway matched molecularly to Favre’s type of *I. dulcamara f. pygmaea*, but no North American specimens are reported. Interestingly this form appears outside the *I. dulcamara* clade.
Inocybe leucoblema Kühner (Figs. 2, 5)

Pileus 25-55 mm in diameter, robust, fleshy, convex, slightly domed when young, with margin strongly incurved at first, then curved downwards, or almost plane with slight dome, ocher, brownish yellow, appearing smooth but indistinctly fibrous, a bit greasy when wet, covered with patchy whitish tissue when young, leaving a band or pieces at cap margin; margin entire, not splitting. *Cortina* white, soon gone. *Lamellae* subdecurrent, narrowly adnate, pale yellow, olive, then olive brown, somewhat well-spaced. *Stipe* 25-50 mm long x 8-12 mm wide, robust, whitish, covered with longitudinal white fibrils and velar material, pale ocher underneath, at apex with conspicuous white floccules.

Context very pale yellow, tough, rubbery. *Odor* faint, not strong.

Spores brown, smooth, indistinctly subphaesoliform, flattened in one aspect, 9-11 x 5-6 μm, on average 9.7 x 5 μm. *Basidia* clavate, 30 x 8 μm, 4-sterigmate. *Pleurocystidia* absent. *Cheilocystidia* 25-35 x 10-15 μm, broadly clavate to subpyriform, a few with thickened walls, pale. *Clamps connections* present.

Fig. 4. Micro-features of Alpine *Inocybe* (*Mallocybe*) species from the Rocky Mountain alpine zone. *I. duclamara* CLC 1241, 1-spores, 2-spores from 2-spored basidia), 3-basidia, 4- cheilocystidia. Bar = 10 μm. Spores 200x,
Ecology: alpine habitat, our one collection from Colorado was with *Dryas octopetala*.

Remarks: The robust specimens found in *Dryas* are covered with white fibrils when young and conform to the type description of *I. leucoblema* by Kühner; this includes the somewhat domed pileus when young and thick flesh plus spore size and cystidial shape (Kühner and Romagnesi 1953). This is the first report of this species from the Rocky Mountain alpine zone. It is reported from other arctic-alpine areas of the world as well as from boreal to subalpine habitats in both Europe and North America.

Inocybe leucoloma Kühner (Figs. 2, 6)

Pileus 15-45 mm in diameter, at first hemispherical with inrolled margin, conic-convex, convex, shallow convex, with small umbo (on some), pale yellow brown with olive tint at first, darkening to yellow brown, pale or medium brown, covered with copious whitish velipellis when young, underneath surface woolly, rough-fibrous, fibrous; margin typically turned down, occasionally lifted up, with bits of white tissue. _Lamellae_ decurrent, subdecurrent to adnate (and pulling away), somewhat crowded, pale olive yellow gray when young, then mustard yellow, yellow-brown, brown, edges paler or concolorous. _Cortina_ white, copious, cobwebby, obvious on young specimens. _Stipe_ 15-45 mm x 2-6 mm, equal, bit curved, slim, mostly rather long in relation to pileus, pale brown base color, covered with patches of white longitudinal fibrils or bands of white tissue that rub off and are less obvious in older specimens, hollow or stuffed. _Context_ pale watery yellow brown. _Odor_ faint, fungoid.

Spores brown, smooth, indistinctly subphaesoliform to regularly elliptical, apex obtuse, occasionally subconic, (8.5)-9-11 x 4.5-5.5(6) μm, on average 9-10 x 5.2 μm. _Basidia_ clavate, long and narrow, 35-45(60) x 8-10 μm, some with yellow granular contents, most 4- sterigmate, a few with 2-sterigmata up to 7 μm long. _Pleurocystidia_ absent. _Cheilocystidia_ 15-40 x 8-14 μm, clavate to subpyriform, with thin, pale walls. _Clamp connections_ present. Velar hyphae noted in pileipellis on microscopic examination.

Ecology: alpine habitat, often in wet areas, noted with both shrub (*S. planifolia*) and dwarf (*S. reticulata*) willows.

Remarks: When young, the slim delicate fruiting bodies are covered with copious white tissue, making this taxon distinctive. In older specimens, tissue is apparent only at the cap margin and on the stem as bands of white fibrils. *Inocybe leucoblema* is also covered with white tissue but is a more robust species. Older specimens that lack white tissue might be mistaken for a small *I. dulcamara*. This species is known from the European alpine and this is the first record for the Rocky Mountains. Our specimens were matched molecularly to Kühner’s Type, fit Kühner’s Type description, and match microscopic features of Type (Fig. 6).
Fig. 5. Micro-features of Alpine Inocybe (Malloocybe) species from the Rocky Mountain alpine zone and holotypes. Top: *I. leucoblema* CLC 1721, 1-spores, 2-basidia, 3-cheilocystidia. Bottom: *I. leucoblema* G-C (R. Kühner, 20-8, holotype), 1= spores, 2= basidia, 3= cheilocystidia. bar = 10 um. Spores 2000x, basidia & cystidia 1000x.
Taxa with scaly or upward fibrils on stipe, yellow or ocher inside base

Inocybe fulvipes clade

Subclade A (Figs. 2, 7, 8)

Inocybe aff. substraminipes Kühner

Pileus (robust) 20-50 mm in diameter, robust, convex, shallow convex, ocher, golden brown, orange brown, appressed fibrillose scaly, tomentose, occasionally areolate in center; margin curves down, often rolls under, with yellowish (appendiculate) veil tissue overhanging lamellae or not. **Lamellae** adnate, narrow or broad attachment, narrow to broad, golden yellow, golden brown, orange brown, paler when young. **Cortina** cottony whitish yellow, leaving tissue on cap margin and superior zone on stipe. **Stipe** robust, firm, up to 15-40 mm long x 5-10 mm wide, equal, covered with dingy whitish yellow floccules or scales that flare upward, pale cap color, ocher, yellow brown, white at base exterior, hollow or stuffed, rubbery. **Context** pale yellowish, yellow, golden brown, ocher, more golden or yellow at base. **Odor** faint. Basidiomes dry yellow brown (flesh dries pale orange) in NA collections.

Spores brown, (8)9-11 x 4.5-5.5 μm, on average 9.8 x 5 μm, smooth, regular or subphaesoliform. **Basidia** 25-40 x 7-10 μm, clavate, some with yellow granular contents, mostly 4-sterigmate, a few 2-sterigmate. **Pleurocystidia** absent. **Cheilocystidia** clavate, narrowly clavate, in some collections cylindrical and attenuated, variable, 10-50(60) μm x 5-10 μm, pale, thin-walled (not to be confused with sphaeropedunculate paracystidia interspersed with basidia on gill sides. **Clamp connections** present. Velar hyphae noted in CLC 135 on microscopic examination.

Ecology: In the alpine zone, associated with dwarf and shrubby willows.

Remarks: North American collections are robust with variable golden to orange brown colors, a stout scaly stem, and golden to yellow flesh that is brighter inside the stipe base. If stipe base color is interpreted as yellow, this fits Kühner’s alpine group with this characteristic, i.e., *I. fulvipes*, *I. substraminipes* and *I. paludosa*, although synonymy may be involved. Our NA specimens fit molecularly with specimens from Europe. However, there is variation in the scaly/smooth aspect of the stem, coloration of the basidiome, and cystidial shape within the group. NA specimens (at least) dry a yellow brown color making them distinguishable from Subclade B that dries a red brown color.

We have a sequence from the type specimen of *I. substraminipes* for direct comparison, but those for *I. fulvipes* and *I. paludosa* were not available for comparison.

North American specimens differ somewhat in micro-anatomy to Kühner's original Type of *I. substraminipes* and *I. fulvipes* (Fig. 7, 8). Pleurocystidia for NA specimens are thinner and can be more attenuated, although they are variable in areas of the hymenium. Kühner included rare sphaeropedunculate cells in his Type description which are presented as paracystidia on gill sides in ours.
Fig. 7. Micro-features of Alpine Inocybe (Mallocybe) species from the Rocky Mountain alpine zone. Top: *I. fulvipes* group A (affinity *I. substraminipes*), CLC 1375, 1-spores, 2-larger spores, 3-basidia, 4-cheilocystidia. Bottom: *I. substraminipes* G-C 452068 (R. Kühner nr. 70-148, holotype), 1-spores, 2-basidia, 3-cheilocystidia. Scale bars = 10 um. Spores 2000x, basidia & cystidia 1000x.
The morphological variation is also reflected in the sequence data of the *I. fulvipes* clade with at least four sequence types. There is no clear correlation between sequence data and morphology except for the two taxa described here. More data and further analysis is needed to disentangle the entities within this species complex, also see discussion in Eyssartier (2006).

Outliers CLC 1649 and CLC 1731 were both with *Dryas*; specimens were immature and did not provide quality data, but stipes appeared smoother.

Inocybe fulvipes clade

Subclade B: Inocybe sp. (taxon B)

(Figs. 2, 9)

Pileus 10-35 mm in diameter, conic-convex when young, then broadly convex, some flat in center, occasionally with low boss, orange brown, red brown, brown, umber brown, occasionally more ocher brown, center rough-woolly, scurfy, appressed scaly, outwards roughened striate, smooth when wet, roughened when dry; margin turned down, occasionally splitting, often with rim of tissue. *Lamellae* adnate, with narrow or broad attachment, pale gray yellow at first, then medium to dark yellow brown, red brown, with slight olive tints. *Cortina* cobwebby, dingy yellow, soon gone (absent on older specimens). *Stipe* 10-35 mm long x 2-6(8) mm wide, slim, equal, straight or slightly curved, yellow brown, becoming darker yellow brown, red brown, covered with tufts of rough fibrils (sparse in some) that flare upwards, white at base, hollow or stuffed, rubbery.

Context pale yellow brown, yellow inside stipe base of some specimens. *Odor* faint to faint dulcamara-like. Basidiomes dark dry orange brown or red brown, yellow in stipe base (if present) can persist in dried specimens.

Spores brown, 9-12 x 5-6 μm, on average 9.8 x 5.3 μm, smooth, subphaesoliform with rounded apex. *Basidia* 25-30 x 8-10 μm, clavate, some with yellow granular contents, mostly 4-sterigmate, a few 2-sterigmate. *Pleurocystidia* absent. *Cheilocystidia* clavate, some tending towards pyriform, occasionally with slightly thickened walls, some with golden contents, 20-40 x 9-12 μm. *Clamp connections* present.

Ecology: In the Rocky Mountain alpine zone mostly with *Salix reticulata*, one collection with mixed *S. arctica* and *S. planifolia*. Two collections recorded near streams.

The North American collections typically have a dark red brown coloration, appressed scaly pileus and upward directed fibrils on the stipe. It could be confused with other dark Mallocybes with scaly aspects (Fig. 2, part 2) such as: *I. fuscomarginata* (Fig. 9b), *I. umbrinofusca* (Fig. 10b), *I. terrigena*, and *I. squarrosoannulata* (Fig. 10a). Also compare morphological characteristics in the Key and microscopic features on the reference sheet (Fig. 11). Rocky Mountain specimens have bright yellow flesh in the stipe base (especially when frozen), but this was not a consistent character for each basidiome. Yellow would be expected inside the stipe base of the *I. fulvipes* group. Our specimens dried red brown in contrast to subclade A that dries more yellow brown (at least for NA collections). When yellow does occur in the stipe base of specimens in subclade B, it can persist on drying. Since the types of
Remarks: Our collections were molecularly matched to a second collection of Kü.

Fig. 10. Micro-features of Alpine Inocybe (Mallocybe) species, holotypes. Top: *I. squarrosoannulata* G-C (R. Kühner, nr. 63-236, holotype), 1-spores, 2-basidia, 3-cheilocystidia. Bottom: *I. umbrinofusca* G-C 452075 (R. Kühner nr. 7(B)-38, holotype), 1-spores, 2-basidia, 3-cheilocystidia. Scale bars = 10 um. Spores 2000x, basidia & cystidia 1000x.
other taxa in the *I. fulvipes* group such as *I. fulvipes* (Fig. 8a) and *I. paludosa* (Fig. 8b) are not available we cannot yet name this rather distinctive taxon in subclade B, but the microscopic features do not appear to fit either of these taxa.

Inocybe terrigena (Fr.) Kühner

This species is known from boreal to hemiboreal areas associated with *Picea abies* on calcareous ground in Europe and subalpine areas of the Rocky Mountains. We can here report one collection from the Rocky Mountain alpine zone with morphology similar to *I. terrigena*. The fruiting bodies are distinctly smaller and the ITS sequence differ in a few base pairs from the boreal specimens indicating that it may different. We need more data before giving a detailed description of this species.

Discussion: Of eight resolved clades within *Mallocybe*, six contain North American material and all are matched with European material at the species level (Fig. 1). These are *I. arthrocystis*, *I. dulcamara s.l.*, *I. leucoloma*, *I. leucoblema*, *I. terrigena* and in the *I. fulvipes* group, *I. aff. substraminipes*. These matches between Rocky Mountains alpine collections and those from Scandinavia coupled with data from arctic-alpine habitats in other countries (Table 1) reveal broad intercontinental ranges for these species. Interestingly, a majority of North American collections are from the southern Rocky Mountains in Colorado, far from the arctic. These sites may harbor more varied habitats with the calcareous soil preferred by some *Inocybe* species than northern sites on the Beartooth Plateau (Cripps & Horak 2009). Type material for *I. dulcamara f. pygmaea* matched one collection from Norway outside the dulcamara clade. The Types for *I. umbrinofusca* and *I. squarrosoannulata* did not match any of our collections and came out on separate single branches. Micro-anatomy of *I. umbrinofusca* T (70(B)-38 and *I. squarrosoannulata* T (69-236) types are substantially similar. However, ITS sequence data indicate that they should be regarded as separate species. Additional material is needed to get a broader knowledge of these species. One collection of *I. terrigena* is reported from the Beartooth Plateau that matched European material but is not reported in detail due to insufficient data.

Acknowledgments: The National Science Foundation Biotic Surveys and Inventories program is acknowledged for funding the grant to CL that led to this research. The Swedish species initiative, ArtDatabanken, SLU Uppsala and the Research Council for Environmental, Agricultural Sciences and Spatial Planning (Formas), grants to EL. Herbarium G granted permission to extract DNA from Kühner type 1988) and synonymy may be involved. Color and ‘scaliness’ within the *I. fulvipes* group appears somewhat variable as are cystidia. There was some confusion within the clade as to the character “chrome yellow in base” originally described for *I. fulvipes*, *I. substraminipes* and *I. paludosa* as it does not appear to be consistent for all basidiomes within collections from NA. However, it was not possible to obtain Types for *I. fulvipes* and *I. paludosa*, so further resolution was not possible at this time, but warrants further study. In addition, micro-morphology matches of types and NA specimens were made for *I. arthrocystis*, *I. leucoblema* and *I. leucoloma*. Micro-morphology of types in the *I. fulvipes* group and similar taxa is provided for comparison (Figs. 7, 8 and 11). Comparisons suggest that *I. fulvipes* and *I. substraminipes* may be contaxic.

Type material for *I. arthrocystis* and *I. dulcamara s.l.* provided reference sequences for these respective taxa. The *I. fulvipes* group likely includes at least *I. fulvipes*, *I. substraminipes* and *I. paludosa* (Kühner
material. International Symposia on Arctic-alpine Mycology (ISAM) helped initiate the international collaboration on this project.

Literature cited

Addendum 1: Key to subgenus Malloocybe in the Rocky Mountain alpine zone

1. Spores long and narrow, more than twice as long as wide, pleurocystidia articulated, clavate. Pileus bell-shaped, uniformly pubescent, ocher; lamellae strikingly white at first, cortina not apparent, margin clean; stipe dingy white or pale ocher; odor absent.. **I. arthrocytis**
 - *I. malenconii* has similar spores, wider cystidia, a cortina, flatter, brown pileus**
 - *I. gymnocarpa* lacks a cortina, is larger (up to 6 cm) with wider spores**

1. Spores less than twice as long as wide, cystidia not articulated as above, cortina more apparent..............2

2. Basidiomes covered with white tissue when young that can remain on pileus margin or stipe in age; cortina white, often copious..3

2. Basidiomes not obviously covered with white tissue (u.v. remnants) when young (may have white peronate sheath on stipe); cortina pale yellow, ocher, dark ocher, golden..4

3. Pileus robust (25-55 mm), context thick, margin incurved, pale brown covered with white tissue; lamellae pale yellow or olive brown; cortina white; stipe robust and covered with whitish tissue; odor faint.. **I. leucoblema**

3. Pileus (15-45), context thinner, margin can be incurved, ocher or pale brown beneath white u.v. tissue or white tissue only at margin; lamellae pale then yellow brown; cortina white copious; stipe slim, covered with white fibrils in bands; odor faint ..4

4. Pileus smooth fibrous, ocher with olive tint; lamellae ocher with olive tint; cortina pale yellow or ocher; stipe ocher, slightly roughened (white peronate sheath for some); context pale yellow; odor honey-like or of burnt sugar; dries pale ocher with olive tint............................... **I. dulcamara f. typique**
 - *I. dulcamara var. pygmaea* – smaller with larger spores**
 - *I. dulcamara var. peronata* – with white peronate sheath**

4. Pileus scaly, rough or smoother; stipe often scaly, squamose or with upward flaring fibrils (sometimes sparse); context white, buff, ocher, pale yellow, yellow; yellow in base or not..........................5

5. Pileus (20-50 mm), appressed tomentose, radially fibrous, yellow brown, golden brown, orange brown; lamellae golden to orange brown; cortina yellow, can be appendiculate or leave zone on stipe; stipe robust (15-40 x 5-10 mm), ocher, with white base (exterior), fibrillose, with armillate, flocculose scaly or smoother; context pale yellow, bright yellow, ocher; stipe base interior golden or yellow color; odor faint; basidiomes dry yellow brown color............. **I. fulvipes group subclade A** (incl. *I. substraminipes*)

5. Pileus (10-35 mm), rough woolly, appressed fibrous, slightly scaly, ocher, red brown, brown, umber brown; lamellae yellow brown, red brown; cortina yellow; stipe rough, slim (10-35 x 2-6 mm); base flesh yellow in some specimens; odor faint; basidiomes dry red brown color... **I. fulvipes group subclade B**

Other taxa with dark colors and scaly stipes, but lacking yellow in stipe base include:
- *I. fuscomarginata* has a scaly pileus, wide pigment-encrusted cystidia**
- *I. squarrosoannulata* has finely squamose pileus, wider different spores**
- *I. terrigena* has appressed scaly pileus, more definitive annulus**
- *I. umbrinofusca* has pubescent pileus, wider different spores**

* spores sizes for Rocky Mountain collections in descriptions and for Types in Addendum.
**not recorded in Rocky Mountain alpine to date or not described here.
Addendum 2: Information on Type Specimens and translations of protologues of *Inocybe* described by R. Kühner

Note: E.H. personal measurements of microcharacters deviate from those publ. in Kühner (see explanation in methods). Also, it is interesting to note that Kühner often refers to “negative information” instead of giving actual facts [e.g.: not white!?]. Original text is re-adjusted with reference to sequence of macro-then microcharacters.

Inocybe arthrocytis Kühner
(holotype examined by EH) (Figs. 3 & 11)

Translated protologue:
Pileus expanded, broadly obtuse, ochre-brown, occasionally velutinous-floccose (as observed by naked eye, recalls *Cystoderma*), under lens minute, appressed or individual squamules reddish brown. Lamellae dirty yellowish or olive-brown. Stipe up to 5 mm in diam., straw-yellow becoming ochre, covered with longitudinal, (not whitish) fibrils, base not chrome yellow. Cortina inconspicuous, evanescent. Odor not distinctive (“subinodorous”).

Spores smooth [not gibbous], (9.5-)10.2-10.6(-11.7) µm, (Q ca. 2). Metuloids absent. Cheilocystidia catenulate, broadly sessile, unstalked, globose-elliptical, terminal cells 12-23 x 9-18 µm.

Associated with *Salix herbacea*. France: Savoie, Parc National de la Vanoise, near Col de l’Iseran, between the creek Cema and Pays Désert, 2600 m alt., 06.08.1973, Kühner 73-310 (holotype, GC).

Inocybe fulvipes Kühner
(holotype examined by EH, lost?) (Figs. 8 & 11)

Translated protologue:
Pileus 12-28 mm diam., dark ochre or ochre-brown, 10 YR 7/5 becoming 7.5 YR 5/5 or 5 YR 4/4, covered with appressed, agglutinated, minute fibrils. Lamellae pale brownish. Stipe 2.5-4.5 mm in diam., at first pallid white from veil remnants becoming pale brownish, most parts covered and striate from ± longitudinal pallid fibrils. Cortina conspicuous, fibrillose, white. Odor not distinctive (subinodorus).
Spores [not gibbous], (9.7-)10.1(-10.5) x (5.2-)5.5-6(-6.5), Q 1.7-1.8. Metuloids absent.
Cheilocystidia 16-25 x 7-14 μm, often pyriform.

Associated with Dryas and Salix retusa.
France: Savoie, Parc National de la Vanoise, Le Moriond, near Pralognan, 2200 m alt.,

Inocybe paludosa Kühner (Fig. 8)
(holotype examined by EH)

France, Savoie, P.N. Vanoise, Pralognan,
Herb. G-C (R. Kühner nr. 70-123, holotype).

Inocybe squarrosoannulata Kühner
(holotype examined by EH)

France, Savoie, P.N. Vanoise, Pralognan,
Arcellin, among moss in bog with Salix foetida,
2300 m alt. 29 Aug. 1963, Herb. G-C (R. Kühner,
nr. 63-236, holotype).

Inocybe substraminipes Kühner
(holotype examined by EH)

HOLOTYPE “70-148”
F – savoie, Region de Pralognan, Haute vallee de
champagny, Parc de la Vanoise, moraine du
6 exemplaires, -don’t 1 ferme, parmi les Dryas.
Alt: 2000 – 2100 m. GENIEVE, 19 G No
452068.

According to Esteve-Raventós I. fulvipes is
supposed to be identical with Inocybe
substraminipes Kühner (holotype material
examined by EH).

Inocybe umbrinofusca Kühner
(holotype examined by EH)

France, Savoie, Maurienne, Plan des Evettes,
among moss in moist habitat, associated with
Salix reticulata, 2500 m alt., 18 Aug. 1970,
Herb. G-C 452075 (R. Kühner nr. 7(B)-38,
holotype).

Fig. 12. Alpine Inocybe habitat (green areas) on the Beartooth Plateau and collectors E. Larsson,